Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Drug Test Anal ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342098

RESUMO

Nandrolone and its prohormones, including 19-norandrost-4-ene-3,17-dione and 19-norandrost-4-ene-3ß,17ß-diol, are anabolic steroids forbidden at all times in sports according to the World Anti-Doping Code Prohibited List and its metabolite 19-norandrosterone (19NA) is the preferred urinary target compound to identify their abuse. In recent years, an increasing number of 19NA isotope ratio mass spectrometry (IRMS) cases have arisen that, based on the initial testing procedure, were likely to result in an adverse analytical finding but were concluded negative after IRMS analysis. The current study was therefore set up to gain a better insight on the prevalence of nandrolone preparations with endogenous carbon isotope ratio values in Australia. Suitable workplace (non-athlete) urine samples that had previously been reported positive for 19NA were identified and analysed on IRMS. A total of 82% of the samples that were analysed were reported with enriched carbon isotope ratios of 19NA (i.e., 19NA greater than -26‰). This indicates that there is a high prevalence of nandrolone-containing anabolic androgenic steroid preparations in Australia that have 'endogenous' carbon isotope ratios which reduces the ability to identify exogenous nandrolone.

2.
Anal Chem ; 96(1): 238-247, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117670

RESUMO

Hypoxia-inducible factor (HIF) stabilizers are listed in the World Anti-Doping Agency's prohibited list as they can increase aerobic exercise capacity. The rapid pace of emergence of highly structurally diverse HIF stabilizers could pose a risk to conventional structure-based methods in doping control to detect new investigational drugs. Therefore, we developed a strategy that is capable of detecting the presence of any HIF stabilizer, irrespective of its structure, by detecting biological activity. Previously developed cell-based HIF1/2 assays were optimized to a stable format and evaluated for their screening potential toward HIF stabilizers. Improved pharmacological characterization was established by the stable cell-based formats, and broad specificity was demonstrated by pharmacologically characterizing a diverse set of HIF stabilizers (including enarodustat, IOX2, IOX4, MK-8617, JNJ-42041935). The methodological (in solvent) limit of detection of the optimal HIF1 stable bioassay toward detecting the reference compound roxadustat was 100 nM, increasing to 50-100 ng/mL (corresponding to 617-1233 nM in-well) in matching urine samples, owing to strong matrix effects. In a practical context, a urinary limit of detection of 1.15 µg/mL (95% detection rate) was determined, confirming the matrix-dependent detectability of roxadustat in urine. Pending optimization of a universal sample preparation strategy and/or a methodology to correct for the matrix effects, this untargeted approach may serve as a complementing method in antidoping control, as theoretically, it would be capable of detecting any unknown substance with HIF stabilizing activity.


Assuntos
Doping nos Esportes , Detecção do Abuso de Substâncias/métodos , Glicina/química , Pirazóis , Triazóis
3.
Drug Test Anal ; 15(8): 853-864, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37055939

RESUMO

The frequent detection of anabolic androgenic steroids (AAS) indicates their popularity among rule-breaking athletes. The so called long-term metabolites play a crucial role in their detection, and non-hydrolysed sulphated metabolites have gained renewed interest, as research has demonstrated their extended detection time compared to the more conventional markers (e.g., for metenolone and mesterolone). Their potential has been investigated using liquid and gas chromatography-mass spectrometry (LC- and GC-MS). However, due to their complementary nature, chances are that the most promising metabolite on one technique does not necessarily exhibit the same behaviour on the other and vice versa. Therefore, a comparison was carried out where as a trial model, metenolone, mesterolone and 17α-methyltestosterone were selected and the most likely long-term sulphated metabolites identified on four mass spectrometric instruments. Additionally, using a modified sample preparation procedure, comparison between conventional and non-hydrolysed sulphated metabolites between different GC-MS instruments was also included. When focusing on each individual marker, no cases were observed where a single metabolite provided a superior detection time on all instruments. Furthermore, for each AAS, there were incidences where a metabolite provided the best detection time on one instrument but could only be detected for a shorter period or not at all on other instruments. This demonstrates that metabolite detection windows and hence their added-value as target substance are unique and dependent on the analytical technique and not only on their pharmacokinetic behaviour. Consequently, in each case, a metabolite versus instrument evaluation is needed to maximise the probabilities of detecting doping offences.


Assuntos
Anabolizantes , Doping nos Esportes , Humanos , Anabolizantes/metabolismo , Esteróides Androgênicos Anabolizantes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mesterolona/metabolismo , Metenolona , Metiltestosterona/química , Metiltestosterona/metabolismo , Detecção do Abuso de Substâncias/métodos , Sulfatos , Espectrometria de Massas em Tandem/métodos
4.
Drug Test Anal ; 15(11-12): 1344-1355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843396

RESUMO

Sulfated metabolites have shown to have potential as long-term markers (LTMs) of anabolic-androgenic steroid (AAS) abuse. The compatibility of gas chromatography-mass spectrometry (GC-MS) with trimethylsilyl (TMS)-derivatives of non-hydrolysed sulfated steroids has been demonstrated, where, after derivatisation, generally, two closely eluting isomers are formed that both have the same molecular ion [M-H2 SO4 ]•+ . Sulfated reference standards are in limited commercial availability, and therefore, the current knowledge of the GC-MS behaviour of these compounds is mainly based on sulfating and analysing the available standard reference material. This procedure can unfortunately not cover all of the current known LTMs as these are often not available as pure substance. Therefore, in theory, some metabolites could be missed as they exhibit alternative behaviour. To investigate the matter, in-house sulfated reference materials that bear resemblance to known sulfated LTMs were analysed on GC-MS in their TMS-derivatised non-hydrolysed state. The (alternative) gas chromatographic and mass spectrometric behaviour was mapped, evaluated and linked to the corresponding steroid structures. Afterwards, using fraction collection, known sulfated LTMs were isolated from excretion urine to confirm the observed findings. The categories that were selected were mono-hydroxy-diones, 17-methyl-3,17-diols and 17-keto-3,16-diols as these are commonly encountered AAS conformations. The ability to predict the GC-MS behaviour of non-hydrolysed sulfated AAS metabolites is the corner stone of finding new metabolites. This knowledge is also essential, for example, for understanding AAS detection analyses, for the mass spectrometric characterization of metabolites of new designer steroids or when one needs to characterize an unknown steroid structure.


Assuntos
Anabolizantes , Doping nos Esportes , Esteróides Androgênicos Anabolizantes , Anabolizantes/análise , Sulfatos/metabolismo , Congêneres da Testosterona , Esteroides/análise , Detecção do Abuso de Substâncias/métodos
5.
BMC Biol ; 20(1): 151, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761265

RESUMO

BACKGROUND: Colorectal cancer, one of the most common malignancies worldwide, is associated with a high mortality rate, mainly caused by metastasis. Comparative metagenome-wide association analyses of healthy individuals and cancer patients suggest a role for the human intestinal microbiota in tumor progression. However, the microbial molecules involved in host-microbe communication are largely unknown, with current studies mainly focusing on short-chain fatty acids and amino acid metabolites as potential mediators. Quorum sensing peptides are not yet considered in this context since their presence in vivo and their ability to affect host cells have not been reported so far. RESULTS: Here, we show that EntF*, a metabolite of the quorum sensing peptide EntF produced by Enterococcus faecium, is naturally present in mice bloodstream. Moreover, by using an orthotopic mouse model, we show that EntF* promotes colorectal cancer metastasis in vivo, with metastatic lesions in liver and lung tissues. In vitro tests suggest that EntF* regulates E-cadherin expression and consequently the epithelial-mesenchymal transition, via the CXCR4 receptor. In addition, alanine-scanning analysis indicates that the first, second, sixth, and tenth amino acid of EntF* are critical for epithelial-mesenchymal transition and tumor metastasis. CONCLUSION: Our work identifies a new class of molecules, quorum sensing peptides, as potential regulators of host-microbe interactions. We prove, for the first time, the presence of a selected quorum sensing peptide metabolite in a mouse model, and we demonstrate its effects on colorectal cancer metastasis. We believe that our work represents a starting point for future investigations on the role of microbiome in colorectal cancer metastasis and for the development of novel bio-therapeutics in other disease areas.


Assuntos
Neoplasias Colorretais , Microbiota , Aminoácidos , Animais , Humanos , Camundongos , Microbiota/fisiologia , Peptídeos , Percepção de Quorum/fisiologia
6.
J Pharm Biomed Anal ; 214: 114726, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298973

RESUMO

This work presents an ultrafiltration-based, validated method for the screening and confirmation of prohibited growth hormone-releasing hormone (GHRH) analogues (sermorelin/CJC-1293, sermorelin metabolite, CJC-1295 and tesamorelin) in urine by nanoLC-HRMS/MS. Sample preparation avoids the use of laborious antibody-based extraction approaches and consists solely of preconcentration by ultrafiltration. Even in the absence of immuno-affinity purification steps, high sensitivity was still ensured as limits of detection between 5 and 25 pg/mL and limits of identification between 25 and 50 pg/mL were established. The robustness of the miniaturized chromatographic setup was evaluated through the injection of 200 + preconcentrated urinary extracts. In a comparison with immuno-affinity purification, enhanced recoveries (59 - 115%) and similar sensitivity were achieved, yet at lower operational costs. Stability experiments showed the importance of the proper handling of urine samples to avoid degradation of these peptide hormones, especially for sermorelin and its metabolite which were found to rapidly degrade at temperatures > 4 °C and pH values < 7 in accordance with earlier studies. Without the need for specific antibodies, this method may be expanded to cover emerging peptide drugs (≥ ~3 kDa), as well as their metabolites in the future to facilitate coverage for this class of prohibited substances.


Assuntos
Doping nos Esportes , Sermorelina , Anticorpos , Cromatografia de Afinidade/métodos , Hormônio Liberador de Hormônio do Crescimento/análise , Detecção do Abuso de Substâncias/métodos , Ultrafiltração
7.
Drug Test Anal ; 14(7): 1273-1290, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35302297

RESUMO

Ibutamoren mesylate, or MK-0677, is an orally active, nonpeptide growth hormone secretagogue that has been developed to stimulate excretion of endogenous growth hormone. It has been evaluated for the treatment of a range of clinical conditions but is not available therapeutically. Nonetheless, MK-0677 is widely available to purchase online, sold as 'supplement' products. The mode of action and relative ease of purchase make MK-0677 a potential threat with regard to sports doping. The aim of this study was to investigate the metabolism of MK0677 in the horse following in vitro incubation and oral administration to two Thoroughbred racehorses, in order to identify the most appropriate analytical targets for doping control laboratories. Liquid chromatography high resolution mass spectrometry was used for metabolite identification, and subsequently, liquid chromatography-tandem mass spectrometry was used to generate full metabolite profiles for post-administration urine and plasma samples. Fourteen phase I metabolites were identified in vitro; 13 of these were subsequently detected in urine and nine in plasma collected post-administration, alongside the parent compound in both matrices. In both urine and plasma, the longest duration of detection was observed for an O-dealkylated metabolite of MK-0677, and therefore, this would be the best target for the detection of MK-0677 administration. MK-0677 and the O-dealkylated metabolite were found to be excreted largely unconjugated in urine and plasma.


Assuntos
Doping nos Esportes , Secretagogos , Administração Oral , Animais , Cromatografia Líquida/métodos , Hormônio do Crescimento , Cavalos , Indóis , Compostos de Espiro , Detecção do Abuso de Substâncias/métodos
8.
J Appl Physiol (1985) ; 132(3): 673-681, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050796

RESUMO

Acute apnea is known to induce decreases in oxyhemoglobin desaturation (SpO2) and increases in erythropoietin concentration ([EPO]). This study examined the potential of an apnea training program to induce erythropoiesis and increase hematological parameters and exercise performance. Twenty-two male subjects were randomly divided into an apnea and control group. The apnea group performed a 6-wk apnea training program consisting of a daily series of five maximal static apneas. Before and after training, subjects visited the lab on 3 test days to perform 1) a ramp incremental test measuring V̇o2peak, 2) CO-rebreathing for Hbmass determination and a 3-km time trial, and 3) an apnea test protocol with continuous finger SpO2 registration. Venous blood samples were drawn before and 180 min after the apnea test for analysis of [EPO]. Minimal SpO2 reached during the apnea test protocol was 91 ± 7% pre and 82 ± 7% post apnea training. The apnea test protocol did not elicit an acute increase in [EPO] (P = 0.685) before nor after the training program. Consequently, resting [EPO] (P = 0.170), Hbmass (P = 0.134), V̇o2peak (P = 0.796), and 3-km cycling time trial performance (P = 0.509) were not affected either. The apnea test and training protocol, consisting of five maximal static apneas, did not induce a sufficiently strong hypoxic stimulus to cause erythropoiesis and therefore did not result in an increase in resting [EPO], Hbmass, V̇o2peak, or time trial performance. Longer and/or more intense training sessions inducing a stronger hypoxic stimulus are probably needed to obtain changes in hematological and exercise parameters.NEW & NOTEWORTHY Apnea training has been suggested as a promising method to improve exercise performance for over a decade. However, to our knowledge, this study is the first to evaluate its value on both hematological parameters and exercise performance, including Hbmass and a control group. No changes in Hbmass nor exercise performance were observed. Contradicting previous research, no acute increase in [EPO] following apnea was observed either, indicating that more intense protocols are needed, at least in nonapnea-trained individuals.


Assuntos
Apneia , Hemoglobinas , Eritropoese , Exercício Físico , Humanos , Hipóxia , Masculino
9.
Drug Test Anal ; 14(2): 349-370, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34714606

RESUMO

Selective androgen receptor modulators, SARMs, are a large class of compounds developed to provide therapeutic anabolic effects with minimal androgenic side effects. A wide range of these compounds are available to purchase online and thus provide the potential for abuse in sports. Knowledge of the metabolism of these compounds is essential to aid their detection in doping control samples. In vitro models allow a quick, cost-effective response where administration studies are yet to be carried out. In this study, the equine phase I metabolism of the non-steroidal SARMs GSK2881078, LGD-2226, LGD-3303, PF-06260414, ACP-105, RAD-140 and S-23 was investigated using equine liver microsomes. Liquid chromatography coupled to a QExactive Orbitrap mass spectrometer allowed identification of metabolites with high resolution and mass accuracy. Three metabolites were identified for both GSK2881078 and LGD-2226, four for LGD-3303 and RAD-140, five for PF-06260414, twelve for ACP-105 and ten for S-23. The equine metabolism of GSK-2881078, LGD-2226, LGD-3303 and PF-06260414 is reported for the first time. Although the equine metabolism of ACP-105, RAD-140 and S-23 has previously been reported, the results obtained in this study have been compared with published data.


Assuntos
Anabolizantes , Doping nos Esportes , Anabolizantes/metabolismo , Androgênios/análise , Animais , Cromatografia Líquida/métodos , Cavalos , Receptores Androgênicos/metabolismo , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/veterinária
10.
Drug Test Anal ; 14(5): 851-863, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33982451

RESUMO

The most frequently detected substances prohibited by the World Anti-Doping Agency (WADA) belong to the anabolic steroids class. The most challenging compounds among this class are the endogenous anabolic steroids, which are detected by quantitative measurement of testosterone (T) and its metabolites with a so-called "steroid profiling" method. The current steroid profile is based on the concentrations and ratios of the sum of free and glucuronidated steroids. Recently, our group developed a steroid profiling method for the detection of three free steroids and 14 intact steroid conjugates, including both the glucuronic acid conjugated and sulfated fraction. The study aimed at evaluating the long-term stability of steroid conjugate concentrations and ratios, and the influence of different endogenous steroids on this extended steroid profile. A single dose of oral T undecanoate (TU), topical T gel, topical dihydrotestosterone (DHT) gel, and oral dehydroepiandrosterone (DHEA) was administered to six healthy male volunteers. One additional volunteer with a homozygote deletion of the UGT2B17 gene (del/del genotype) received a single topical dose of T gel. An intramuscular dose of TU was administered to another volunteer. To avoid fluctuation of steroid concentrations caused by variations in urinary flow rates, steroid ratios were calculated and evaluated as possible biomarkers for the detection of endogenous steroid abuse with low doses. Overall, sulfates do not have substantial additional value in prolonging detection times for the investigated endogenous steroids and administration doses. The already monitored glucuronides were overall the best markers and were sufficient to detect the administered steroids.


Assuntos
Doping nos Esportes , Di-Hidrotestosterona/metabolismo , Humanos , Masculino , Esteroides , Detecção do Abuso de Substâncias/métodos , Sulfatos , Testosterona/metabolismo , Congêneres da Testosterona
11.
Artigo em Inglês | MEDLINE | ID: mdl-34216910

RESUMO

Nano-liquid chromatography (nanoLC) has proven itself as a powerful tool and its scope entails various applications in (bio)analytical fields. Operation at low (nL/min) flow rates in combination with reduced inner dimensions (ID < 100 µm), leads to significantly enhanced sensitivity when coupled with electrospray ionization-mass spectrometry (ESI-MS). Challenges that remain for the routine implementation of such miniaturized setups are related to clogging of the system and robustness in general, and thus the application of tedious sample preparation steps. To improve ruggedness, a filter placed upstream in the LC prevents particles from entering and clogging the system. This so-called online automatic filtration and filter back-flush (AFFL) system was combined with nanoLC and the direct injection principle for the sensitive confirmatory analysis of fifty different doping-relevant peptides in urine. The presented assay was fully validated for routine purposes according to selectivity and matrix interference, limit of identification (LOI), carryover, matrix effect, sample extract stability, analysis of educational external quality assessment (EQAS) samples, robustness of the online AFFL-setup and retention time stability. It was also fully compliant with the most recent minimum required performance levels (MRPL) and chromatographic/mass spectrometric identification criteria (IDCR), as imposed by the World Anti-Doping Agency (WADA). In the absence of labor-intensive sample preparation, the application of AFFL allowed for the injection of diluted urine samples without any noticeable pressure buildup in the nanoLC system. Contrary to earlier observations by our group and others, the addition of dimethylsulfoxide (DMSO) to the mobile phase did not enhance sensitivity in the presented nanoflow setup, yet was beneficial to reduce carry over. Although the robustness of the presented setup was evaluated only for the analysis of diluted urine samples, it is entirely conceivable that routine applications employing other matrices and currently running on analytical scale LC instruments could be transferred to micro/nanoLC scale systems to reach lower detection limits.


Assuntos
Cromatografia Líquida/métodos , Doping nos Esportes , Espectrometria de Massas/métodos , Hormônios Peptídicos/urina , Dimetil Sulfóxido , Filtração , Humanos , Limite de Detecção , Nanotecnologia , Reprodutibilidade dos Testes
12.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254058

RESUMO

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

13.
Drug Test Anal ; 13(11-12): 1897-1905, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34081842

RESUMO

Glucocorticosteroid use in sport is restricted to non-systemic (nasal/ophtamological/dermatological/intra-articular) use. Systemic use is prohibited because of strong inflammatory suppressing effects. Prednisolone is a GC proven to be very effective in the treatment of nasal congestions and allergic rhinitis and its therapeutic use is allowed. To establish normal urinary concentration ranges for nasally administered prednisolone, an excretion study was performed with Sofrasolone® (nasal-inhaler). Six volunteers were administered a high dose (4.5 mg prednisolone in four gifts over a 9-h period). Samples were analysed using a validated LC-MS/MS method monitoring prednisolone (PRED) and the metabolites prednisone (PREDON), 20ß-dihydroprednisolone (20ßPRED) and 20α-dihydroprednisolone (20αPRED) in the total fraction (glucuroconjugated and free). Maximum concentrations were 266, 500, 350 and 140 ng/ml for PRED, PREDON, 20ßPRED and 20αPRED, respectively. These results show that the current reporting limit of 30 ng/ml in urine can be easily exceeded after therapeutic use. Hence, to avoid false-positive findings related to nasal application, this limit should be increased. To investigate the degree of glucuronidation of PRED and its metabolites also the free fraction was investigated. This shows that PREDON has the highest glucuroconjugation (50%). PRED, 20ßPRED and 20αPRED only show less than 20% conjugation.


Assuntos
Doping nos Esportes/prevenção & controle , Glucocorticoides/análise , Prednisolona/análise , Detecção do Abuso de Substâncias/métodos , Administração Intranasal , Cromatografia Líquida/métodos , Glucocorticoides/administração & dosagem , Glucocorticoides/urina , Humanos , Prednisolona/administração & dosagem , Prednisolona/urina , Espectrometria de Massas em Tandem/métodos
14.
Anal Chim Acta ; 1168: 338610, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34051993

RESUMO

Androgenic anabolic steroids are the most misused substances in sports because of their performance-enhancing effects. Often synthetic analogues of endogenously present steroids are administered. To determine their endogenous or exogenous origin, Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC-C-IRMS) is used in the field of doping control. Compounds subjected to IRMS analysis must be interference-free, with liquid chromatography fraction collection (HPLC-FC) being the crucial clean-up step. However, this clean-up is challenging, particularly for compounds present at low concentrations in samples with pronounced matrix effects. The compounds of interests for IRMS analyses in doping control are testosterone (T) and its main metabolites (androsterone, etiocholanolone, 5α-androstane-3α,17ß-diol, 5ß-androstane-3α,17ß-diol), epitestosterone, 19-norandrosterone (19-NA), boldenone (B) and its main metabolite (BM), formestane (F) and 6αOH-androstenedione (6aOHADION). Currently, the available methods only deal with a selection of the above-mentioned compounds. Some of these compounds (e.g., 19-NA, B, BM, 6aOHADION) are present in very low concentrations, requiring an extensive and dedicated sample clean-up, and this makes it challenging to develop a universal clean-up procedure. Many of these methods require different and multiple offline HPLC-FC setups, which are labour-intensive and time-consuming. That is problematic during, e.g., large sports events, where reporting time is limited (e.g., 72 h). Therefore, in the current work, we developed a uniform online 2D/3D HPLC-FC method, capable of purifying all relevant target compounds in a single run, leading to the fastest clean-up procedure so far (i.e., 31 min for T and its main metabolites; 46 min for 19-NA, F and 6aOHADION; 48 min for B and BM).


Assuntos
Anabolizantes , Doping nos Esportes , Isótopos de Carbono/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Esteroides , Detecção do Abuso de Substâncias , Testosterona
15.
Artigo em Inglês | MEDLINE | ID: mdl-33848801

RESUMO

Small peptides are handled in the field of sports drug testing analysis as a separate group doping substances. It is a diverse group, which includes but is not limited to growth hormone releasing-factors and gonadotropin-releasing hormone analogues. Significant progress has been achieved during the past decade in the doping control analysis of these peptides. In this article, achievements in the application of liquid chromatography-mass spectrometry-based methodologies are reviewed. To meet the augmenting demands for analyzing an increasing number of samples for the presence of an increasing number of prohibited small peptides, testing methods have been drastically simplified, whilst their performance level remained constant. High-resolution mass spectrometers have been installed in routine laboratories and became the preferred detection technique. The discovery and implementation of metabolites/catabolites in testing methods led to extended detection windows of some peptides, thus, contributed to more efficient testing in the anti-doping community.

16.
J Chromatogr A ; 1642: 462039, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33735641

RESUMO

The World Anti-Doping Agency (WADA) publishes yearly their prohibited list, and sets a minimum required performance limit for each substance. To comply with these stringent requirements, the anti-doping laboratories have at least two complementary methods for their initial testing procedure (ITP), one using gas chromatography - mass spectrometry (GC-MS) and the other using liquid chromatography-MS (LC-MS). Anabolic androgenic steroids (AAS) have in previous years consistently been listed as the most frequently detected class of compounds. Over the last decade, evidence has emerged where a longer detection time is attained by focusing on sulfated metabolites of AAS instead of the conventional gluco-conjugated metabolites. Despite a decade of research on sulphated AAS using LC-MS, no LC-MS ITP has been developed that combines this class of compounds with the other mandatory targets. Such combination is essential for economical purposes. Recently, it was demonstrated that the direct injection of non-hydrolysed sulfates is compatible with GC-MS. Using this approach and by taking full use of the open screening capabilities of the quadrupole time of flight MS (QTOF-MS), this work describes for the first time a validated ITP that allows the detection of non-hydrolysed sulfated metabolites of AAS while, simultaneously, remaining capable of detecting a vast range of other classes of compounds, as well as the quantification of endogenous steroids, as required for an ITP compliant with the applicable WADA regulations. The method contains 263 compounds from 9 categories, including stimulants, narcotics, anabolic androgenic steroids and beta-blockers. Additionally, the advantages of the new method were illustrated by analysing excretion samples of drostanolone, mesterolone and metenolone. No negative effects were observed for the conventional markers and the detection time for mesterolone and metenolone increased by up to 150% and 144%, respectively compared to conventional markers.


Assuntos
Anabolizantes/análise , Doping nos Esportes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Programas de Rastreamento , Metaboloma , Esteroides/análise , Adulto , Androstanóis/análise , Humanos , Hidrólise , Limite de Detecção , Masculino , Metenolona/análise , Reprodutibilidade dos Testes , Detecção do Abuso de Substâncias/métodos
17.
Drug Test Anal ; 13(7): 1270-1281, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33629499

RESUMO

The steroidal module of the Athlete Biological Passport (ABP) has been used since 2014 for the longitudinal monitoring of urinary testosterone and its metabolites to identify samples suspicious for the use of synthetic forms of Endogenous Anabolic Androgenic Steroids (EAAS). Multiple recent studies have suggested that monitoring of blood parameters may provide enhanced detectability of exogenous testosterone administration. Transdermal and intramuscular testosterone administration studies were carried out in 15 subjects, and the effect on blood steroidal levels, hematological parameters, and gonadotropins was evaluated. Serum testosterone and dihydrotestosterone levels increased while gonadotropin levels were suppressed after administration. A modest increase in reticulocytes was also observed. The blood parameters that were responsive to the administrations were combined into several linear discriminant models targeting both administration (on) and washout (off) phases. The models were effective in detecting the large dose intramuscular administration but were less successful in the detection of the lower dose transdermal application. The blood profiling models may provide complementary value but do not appear to be substantially more advantageous than longitudinal urinary profiling.


Assuntos
Androgênios/sangue , Doping nos Esportes/prevenção & controle , Detecção do Abuso de Substâncias/métodos , Testosterona/análogos & derivados , Administração Cutânea , Adulto , Estudos Cross-Over , Di-Hidrotestosterona/sangue , Análise Discriminante , Relação Dose-Resposta a Droga , Géis , Humanos , Injeções Intramusculares , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reticulócitos/metabolismo , Testosterona/administração & dosagem , Testosterona/sangue
18.
J Steroid Biochem Mol Biol ; 209: 105851, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610798

RESUMO

OBJECTIVE: Men with obesity often have low total and, with increasing adiposity, also low free testosterone (T) levels, which can partially restore during weight loss. Although this is partly explained by lower sex hormone binding globulin (SHBG) production and hypothalamic-pituitary downregulation, it is still not unravelled whether changes in androgen metabolism contribute to this phenomenon. Therefore, early changes in urinary excretion of T and its metabolites, during weight loss, in men with obesity are investigated. DESIGN: Longitudinal study. METHODS: Fourteen men with obesity (age 52(45-60)years, BMI 42.6(41.8-44.8)kg/m²) underwent gastric bypass surgery (GBS). Before surgery and 3 weeks, 6 weeks, 6 months and 1 year thereafter, 24 h urine and fasting serum samples were collected. Serum T and estradiol (E2) levels were analyzed using LC-MS/MS and urinary metabolites of T with GC-MS/MS. RESULTS: Already three weeks after GBS, serum SHBG and total T levels increased and remained increased as compared to baseline (all,p < 0.0125). Gonadotropins and (free) E2 levels were unchanged, serum E2/T ratio decreased (p < 0.0125). Total amount of urinary T increased non-significantly with mean increases of 53 % one year after GBS (p = 0.026). Urinary E2/T, estrone/T, 3α-androstanediol/T and androsterone/T ratios decreased after GBS (p < 0.0125). CONCLUSIONS: Restoration of circulating T levels during weight loss in this population is not only brought about by normalization of circulating SHBG levels, but increased production of and alterations in T metabolism also contribute. More specifically, relative decreases in aromatization and lower 5α-reductase activity might also be involved in restoring T levels in men with obesity.


Assuntos
Hidroxiesteroide Desidrogenases/metabolismo , Obesidade/metabolismo , Globulina de Ligação a Hormônio Sexual/metabolismo , Testosterona/metabolismo , Redução de Peso , Humanos , Hidroxiesteroide Desidrogenases/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Estudos Prospectivos
19.
Drug Test Anal ; 13(2): 369-385, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32959959

RESUMO

AC-262536 is one of a number of selective androgen receptor modulators that are being developed by the pharmaceutical industry for treatment of a range of clinical conditions including androgen replacement therapy. Though not available therapeutically, selective androgen receptor modulators are widely available to purchase online as (illegal) supplement products. The growth- and bone-promoting effects, along with fewer associated negative side effects compared with anabolic-androgenic steroids, make these compounds a significant threat with regard to doping control in sport. The aim of this study was to investigate the metabolism of AC-262536 in the horse following in vitro incubation and oral administration to two Thoroughbred horses, in order to identify the most appropriate analytical targets for doping control laboratories. Urine, plasma and hair samples were collected and analysed for parent drug and metabolites. Liquid chromatography-high-resolution mass spectrometry was used for in vitro metabolite identification and in urine and plasma samples. Nine phase I metabolites were identified in vitro; four of these were subsequently detected in urine and three in plasma, alongside the parent compound in both matrices. In both urine and plasma samples, the longest detection window was observed for an epimer of the parent compound, which is suggested as the best target for detection of AC-262536 administration. AC-262536 and metabolites were found to be primarily glucuronide conjugates in both urine and plasma. Liquid chromatography-tandem mass spectrometry analysis of post-administration hair samples indicated incorporation of parent AC-262536 into the hair following oral administration. No metabolites were detected in the hair.


Assuntos
Compostos Azabicíclicos/metabolismo , Cavalos/metabolismo , Naftalenos/metabolismo , Substâncias para Melhoria do Desempenho/metabolismo , Administração Oral , Animais , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/sangue , Compostos Azabicíclicos/urina , Cromatografia Líquida , Cabelo/química , Cavalos/sangue , Cavalos/urina , Naftalenos/administração & dosagem , Naftalenos/sangue , Naftalenos/urina , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/sangue , Substâncias para Melhoria do Desempenho/urina , Receptores Androgênicos/metabolismo , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem
20.
J Anal Toxicol ; 45(7): 666-678, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33025016

RESUMO

Stimulants are often used to treat attention deficit disorders and nasal congestion. As they can be misused and overdosed, the detection of stimulants is relevant in the toxicological field as well as in the doping control field. The effects of stimulants can indeed be beneficial for athletes. Therefore, their in-competition use is prohibited by the World Anti-Doping Agency (WADA). As stimulants represent one of the most detected categories of prohibited substances, automation of methods to detect and confirm their presence is desirable. Previous work has shown the advantages of using turbulent flow online solid-phase extraction liquid chromatography-tandem mass spectrometry (online SPE LC-MS-MS) for the detection and confirmation of diuretics and masking agents. Hence, a turbulent flow online SPE LC-MS-MS method, compliant with the WADA's identification criteria, was developed and validated for the detection and confirmation of 80 stimulants or metabolites with limits of identification varying between 10 (or possibly lower) and 100 ng/mL. As several metabolites are common metabolites for multiple administered stimulants, this means that with this method, misuse of well over 100 compounds can be detected. As the developed method uses the same columns and mobile phases as our turbulent flow online SPE LC-MS-MS method for the confirmation of diuretics and masking agents, there is no need to change the configuration of the instrument when switching between the diuretics method and the developed stimulants method.


Assuntos
Estimulantes do Sistema Nervoso Central , Doping nos Esportes , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Extração em Fase Sólida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...